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Organic electrode molecules hold significant potential as the next generation of cathode materials for Li-ion batteries. In this 
study, we have introduced a multi-objective active learning framework that leverages Bayesian optimization and Non-dominated 
Sorting Genetic Algorithms-II. This framework enables the selection of organic molecules characterized by high theoretical 
energy density and low gap (LUMO - HOMO). Remarkably, after only two cycles of active learning, the determination of 
coefficient can reach 0.962 for theoretical energy density and 0.920 for gap with a modest dataset of 300 molecules, showcasing 
superior predictive capabilities. The 2,3,5,6-tetrafluorocyclohexa-2,5-diene-1,4-dione, selected by Non-dominated Sorting 
Genetic Algorithms-II, has been successfully applied to Li-ion batteries, demonstrating a high capacity of 288 mAh/g and a long 
cycle life of 1000 cycles. This outcome underscores the high reliability of our framework. Furthermore, we have also validated 
the universality and transferability of our framework by applying it to two additional databases, the QM9 and OMEAD. When 
the training dataset of the model includes at least 500 molecules, the determination of coefficient essentially reaches 
approximately 0.900 for four targets: gap, reduction potential, LUMO, and HOMO. Our framework provides innovative insights 
applicable to other domains to expedite the screening process for suitable materials.
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With the utilization of fossil fuel, environment issues have 
attracted a great deal of concern [1]. The storage and 
conversion of clean energy in the replacement of fossil fuel 
is supported by many countries, companies, and institutes in 
the world [2,3]. Hence, Li-ion batteries (LIBs) as a kind of 
energy storage devices for clean energy are widely applied 
into mobile electronic devices and electric vehicles [4,5]. 

However, conventional LIBs’ cathode materials, such as 
LiFePO4, LiCoO2, and LiMn2O4, have exposed themselves 
disadvantages like low capacity and high cost, which cannot 
gradually fulfill the booming demand of society [5,6]. 
Especially, these inorganic materials mainly originate from 
ores rather than renewable resources [7]. Therefore, 
developing new cathode materials is extremely urgent [4,8,9]. 
Organic electrode molecules (OEMs) have been centered on 
recently due to their distinctive characteristics [4,5,10]. 
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Firstly, the primary constituents of OEMs are earth-abundant 
elements, such as carbon, oxygen, hydrogen, and nitrogen, 
which render them readily available [6,7,11]. Secondly, by 
manipulating the quantity of active functional groups in 
conjunction with other inactive components of the OEMs, the 
molecules can be effortlessly designed with high capacity 
and voltage [6,11-13]. In the meantime, the stability of OEMs 
should be taken into consideration on the drawing board. 
However, currently, most OEMs are explored and exploited 
by trial and error experiments, making it difficult to explore 
more molecules in the enormous chemical space [14,15].

In recent years, big data combined with machine learning 
(ML), regarded as the ‘fourth paradigm of science’ [16], has 
played more and more significant roles in chemistry and 
material fields [17,18]. In particular, lots of researches about 
cathode materials [15,19], solid-state electrolytes [20,21], 
and other related energy storage and conversion fields [22,23] 
combined with ML boomingly emerge. The active learning 
(AL), a subfield of ML, has been also applied into 
electrocatalysts [24,25], redox flow batteries [26], and 
organic synthesis [27] owing to its distinctive merits [28]. 
Specifically, AL has the capability to acquire as many high-
quality samples as possible by labeling a minimal number of 
samples from the unlabeled space [28]. This implies that the 
optimal molecules or other materials within the chemical 
space can be synthesized or calculated using only a limited 
number of experiments and calculations. For example, Rao 
et al. constructed an AL framework that was capable of 
generating high-entropy alloy chemical space [29]. In every 
cycle of AL, they only synthesized three samples 
recommended by the AL to obtain those high-entropy alloys 
with low thermal expansion coefficient. Lu and his co-
workers proposed an AL framework with margin sampling 
to select two-dimensional ferromagnets with high Curie 
temperature [30]. In addition, Bayesian optimization 
combined with Gaussian process regression (GPR) is also in 
a common practice in AL [25,26,31,32]. What’s more, the 
multi-objective active learning (MOAL) has been adopted to 
screen organic conductor [32], redox active molecules [26], 
and molecular photoswitches [33]. MOAL has the capability 
to simultaneously select multi-property molecules, thus 
reducing screening time compared to the sequential step-by-
step screening with multi-property targets. Nevertheless, a 
persistent issue arises when selecting molecules with one 
desirable property, which may be at the expense of another 
desirable property [27]. This serves as the stumbling blocks 
of MOAL. 

In the present work, we have developed a MOAL 
framework to swiftly and automatically identify those multi-

properties OEMs from our created database (OQEMDB) 
containing 27463 quinone molecules. The theoretical energy 
density (TED) and gap are the two key properties of OEMs 
in LIBs. Thus, the selection of OEMs with high TED and low 
gap is the main task of MOAL. Moreover, the MOAL 
framework is comprised of machine learning model that 
combines convolution neural network with GPR, and Pareto 
front that is achieved by NSGA-II [34]. Furthermore, to 
gather high-performance potential OEMs, we have carried 
out 10 cycles of MOAL. 1100 molecules (including initial 
100 molecules) have been selected and 4400 tasks have been 
performed by Density Functional Theory (DFT) calculations. 
The 2,3,5,6-tetrafluorocyclohexa-2,5-diene-1,4-dione 
(TFDD) determined by NSGA-II from the top 100 molecules 
among the 1100 candidates has been applied into LIBs as 
high-perofrmance cathode materials. The successful 
implementation of our framework provides new insight to 
screen out OEMs or other electrode materials with designable 
multi-properties. Importantly, explicit mathematical 
formulas for both TED and gap have been sought to further 
quantify the structure-property relationship between these 
two targets and OEMs. 

Figure 1  The creation and visualization of OQEMDB. (a) Schematic of the 
building process of quinone database. (b) Visualization of the quinone 
database by t-SNE. The data points are colored according to the theoretical 
capacity.

Quinone molecules have been a lot of traction in the 
exploration of new OEMs [35-37]. To dig out as many 
potential quinone molecules as possible, a chemical space 
was designed that involved a random combination of 12 
quinone molecules and 12 functional groups (Figure S1 and 
S2), and these generated molecules were stored in the form 
of SMIELS (Simplified Molecular Input Line Entry System) 
[38]. More details about the construction of our database 
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were shown in Supporting Information (SI) Note 1. It should 
be mentioned that the application of a brute-force functional 
group substitution method could potentially generate an 
extensive chemical space, in which numerous molecules 
might either be non-existent or unsuitable for OEMs. 
According to our previous chemical experience and 
knowledge, most OEMs have symmetrical structures. Hence, 
serial methods were utilized to lessen the chemical space 
while symmetric molecules were identified (Figure 1a). 
Initially, the molecule would be chosen if the atomic numbers 
of every element within it were even. Then, these selected 
molecules underwent optimization using the MMFF94 [39] 
method from RDKit to determine their three-dimensional 
positions. Nonetheless, due to the intricate structures, some 
molecules could not be optimized efficiently, and were 
consequently discarded. Following this, the SYVA [40], a 
software designed for calculating point group of molecules, 
was employed to screen out the symmetric molecules. Those 
molecules with the C1 point group were removed. At last, a 
database containing 27463 quinone molecules (OQEMDB) 
was constructed. Moreover, the t-Distribution Stochastic 
Neighbor Embedding (t-SNE) method was harnessed to 
visualize the database. Morgan fingerprints were introduced 
to represents these molecules in the course of visualization 
[41] (SI Note 2). Intriguingly, the theoretical capacity (TC) 
of molecules gradually increases from lower right to upper 
left in the visualization space (Figure 1b), and similarly, the 
relative molecular mass (RMM) gradually increases from 
down to up (Figure S3).

Our goals were to screen out those molecules with high 
TED as well as low gap from our constructed database for 
LIB’s cathode applications. Notably, the low gap implied fast 
intramolecular charge transfer [42]. But it was impractical to 
adopt high-throughput experiments or calculations across all 
molecules in the database. Consequently, ML was deemed 
suitable for addressing this issue.

Figure 2  (a). The representations of BQ, NQ, and AQ based on the three 
descriptors, MBTR, SOAP, and ACSF. (b) The three models of GPR, 
GoogLeNet, and GNGPR. (c) The evaluations of GPR, GoogLeNet, and 
GNGPR with MBTR. (d) The evaluations of GNGPR with three descriptors, 
ACSF, SOAP, and MBTR.

Prior to the development of a machine learning model, it 
was imperative to select suitable descriptors that aptly 
represented organic molecules. In this study, three 
descriptors were utilized to accurately depict organic 
molecules: the many-body tensor representation (MBTR), 
Atom-centered Symmetry Functions (ACSF), and Smooth 
Overlap of Atomic Orbitals (SOAP). It was convenient to 
extract these descriptors by python package DScribe [43] 
without tedious manual selection [19,26,44,45]. Specifically, 
the MBTR describes the interaction of each element in one 
molecule, while the SOAP and ACSF record the sum of local 
environment information of every atom in one molecule. For 
example, the benzoquinone (BQ), 1,4-naphthoquinone (NQ), 
and 9,10-anthraquinone (AQ) are similar to each other. Thus, 
their representations from the three descriptors look alike 
(Figure 2a), but the intensity of peaks is slightly different 
according to the corresponding molecules. More details 
could be found in SI Note 3, Table S1, and the reference [43].

Subsequently, an AL model (GNGPR) using GoogLeNet 
neural network (SI Note 4, Table S2, and Table S3) was 
combined with GPR (Figure 2b, SI Note 4, Equation S1) to 
screen out those OEMs with good performance. The basic 
constructions of BNConv2d and Inception are shown in 
Figure S4. Notably, in the training process of GNGPR, it was 
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divided into two stages. Firstly, the GoogLeNet underwent 
150 cycles of training. After 100 cycles, the parameters of 
GoogLeNet model were reserved at the cycle that yielded the 
lowest value of the loss function. Secondly, the output from 
the penultimate layer of reserved GoogLeNet model would 
serve as the input for GPR model, and followingly the 
predicted results were obtained via training the GPR model. 
Additionally, 100 molecules were selected randomly as the 
initial training dataset for GNGPR model (Figure S5). The 
TED (Equation S5) is equal to the RP (SI Note 5, Equation 
S2, and Equation S3) multiplied by the TC (Equation S4), 
and the gap is equal to the LUMO minus HOMO. It is worthy 
of mentioning that the RP is usually served as the target of 
OEMs in previous reports [14,15,45]. Here, we have replaced 
the RP with TED attributing to the availability of TC to 
directly evaluate the energy density of LIBs. However, it is 
still necessary that the RP should be obtained through four 
states of molecules by DFT calculations (Figure S6).

The determination of coefficient (R2) was utilized to assess 
the efficacy of GNGPR model for TED and gap. In the 
meantime, the multi-objective merit of our proposed model 
was also further displayed by its training with RP. Through 
five-fold cross-validation, the R2 of gap, TED, and RP model 
based on the MBTR descriptor are found to be 0.790±0.091, 
0.800±0.175, and 0.850±0.093, respectively (Figure 2c). In 
comparison, the R2 values for the GPR model predicting all 
three targets are consistently below 0.5. However, the R2 of 
the GoogLeNet model, which only predicts the RP, exceeds 
0.6. Notably, it is below 0 observed for ACSF when the gap 
of initial dataset has been predicted by both the GPR and 
GoogLeNet models (Figure S7a). Similarly, this trend is also 
observed for SOAP (Figure S7b). Nevertheless, the GNGPR 
still behaves well. The aforementioned data indicates that the 
GNGPR model exhibites superior predictive accuracy 
compared to the other two models. Furthermore, compared 
with ACSF and SOAP, the model employing MBTR on the 
three targets demonstrates greater robustness and improved 
performance (Figure 2d). As a result, the GNGPR model 
combined with MBTR descriptor is better competent for 
MOAL.

Multi-objective Bayesian Optimization framework 
(MOBO), consisted of Bayesian Optimization (SI Note 6) 
and NSGA-II, was harnessed to build the MOAL loop 
(Figure 3a). Expected Improvement (EI, Equation S6, and S7) 
served as the acquisition function, which is the metric of good 
candidates. In each iteration cycle, the EI of all molecules 
except the previously chosen molecules would be calculated 
by individual GNGPR for TED and gap. Then, 100 
molecules would be chosen based on the Pareto front 

achieved by NSGA-II and calculated by DFT in the next 
cycle. The dataset used for training GNGPR would be also 
updated automatically. Particularly, the training and test sets 
were always split into an 8:2 ratio during the MOAL loop. 
Moreover, Gen1 denoted the molecules generated from the 
initial 100 molecules (Initial). Similarly, Gen2 represented 
the molecules generated from the updated dataset including 
both Gen1 and Initial, and so on. Furthermore, from Figure 
3b and 3c, the R2 scores keep increasing over time, which 
suggests that the MOAL can optimize itself during the 
training process. The R2 values of the initial test set are only 
0.703 for TED (Figure 3d) and 0.821 for gap (Figure 3e). 
Nonetheless, at Gen10, the GNGPR model can achieve high 
scores of 0.985 for TED (Figure 3f) and 0.942 for gap (Figure 
3g). Additionally, the training results of GoogLeNet and 
GNGPR during the MOAL are also shown 

Figure 3  The results of MOAL. (a) Schematic of the MOAL process. The 
R2 of each cycle in the MOAL for TED (b) and gap (c). The predicted results 
of the initial training dataset for TED (d) and gap (e). The predicted results 
of the training dataset of Gen10 for TED (f) and gap (g). (h) The distribution 
of the top 100 molecules in terms of TED and gap after every cycle of 
MOAL. The white point is the median, and the black rectangle represents 
the quarter to three quarters for TED and gap distribution in the violin 
diagram. (i) The full charge and discharge curves of TFDD at 0.1 A/g.

in Figure S8-13. The loss values almost remain unchanged 
after 50 epochs (Figure S8 and S9), indicating that 150 
epochs of training for GoogLeNet are adequate. Concurrently, 
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the performance of GoogLeNet for TED and gap continues 
to improves during the MOAL (Figure S10 and S11). 
Moreover, the top 100 molecules for TED and gap are 
immediately updated every loop (Figure 3h). Importantly, 
since Gen6, both TED and gap have maintained their violin-
like shape with minimal alterations, indicating that most of 
high-performance molecules have been selected by our 
MOAL. Consequently, the MOAL could terminate after 
Gen10. Table S4 displays the top 100 molecules selected by 
NSGA-II, which both have high TED and low gap. 
Considering the molecular synthesizability and stability, the 
TFDD has been selected for further experimental verification. 
When implemented to the cathode of LIBs (SI Note 7), it 
achieves a capacity of 288 mAh/g at 0.1 A/g (Figure 3i) and 
a cycle lifetime of 1000 cyles at 1 A/g (Figure S14), 
suggesting the good ability of experimental guidance from 
the MOAL.

Figure 4  The visualization results of MOAL. The visualization of the 
prediction space from GoogLeNet for TED (a) and gap (b) by t-SNE. The 
data points of the MOAL colored by TED and gap, respectively. (c) The data 
points colored with their number of rings in the prediction space of TED. (d) 
The data points colored with the functional group types (electron-donating, 
electron-withdrawing, and mixing groups) in the prediction space of gap. (e) 
The distribution of the number of rings according to the TED of MOAL. (f) 
The distribution of functional groups according to the gap of MOAL.

Although the MOAL model displays excellent predicting 
ability, a significant limitation of the neural network models 
is their lack of interpretability, particularly in the applications 
where the transparency of decision-making is a crucial 
requirement. To this end, a two-dimensional plane 
constituted by the output vectors originated from the previous 

layer of linear layer of GoogLeNet (Figure 2b) using the t-
SNE has been constructed. Figure S15 illustrates the training 
space of TED and gap. For TED, the data points gradually 
increase from the upper left to the lower right. Meanwhile, 
the molecules with higher TED tend to gather together. The 
gap is also in a similar status. Particularly, even though in the 
prediction space of TED and gap (Figure 4a and 4b), the 1100 
molecules also showcase the similar distribution to the 
training space, demonstrating that the MOAL can achieve 
high accuracy to search those molecules with higher TED or 
lower gap.

In addition, the MOAL is capable of extracting chemical 
information from other insights, such as the number of rings 
and functional groups. For TED, it is evident that the regions 
with varying number of rings in the prediction space exhibit 
distinct characteristics (Figure 4c). This primarily pertains to 
the TC (Equation S4), wherein molecules possessing three 
rings exhibit the lowest TC (Table S5). Consequently, these 
molecules are situated in the leftmost low-TED region. 
Conversely, the pyrene-4,5,9,10-tetraone and benzoquinone 
derivatives are positioned in the bottom right high-TED 
region. The distinct distributions clearly demonstrate that the 
MAOL can discern the key factors influencing the TED. 
Specifically, the distribution of TED across various rings in 
the MOAL database serves to validate the authenticity of the 
prediction space (Figure 4e). However, it is unfortunate that 
no discernible pattern exists for the distribution of molecules 
within the gap prediction space based on the number of rings 
(Figure S16). Furthermore, the functional groups are 
categorized into electron-withdrawing groups (-CN, -COOH, 
-CF3, -NO2, -F, -Cl, and -SO3H) and electron-donating groups 
(-CH3, -NH2, -OH, -OCH3, and -SH). Following this 
classification, the molecules are further classified into three 
categories: those exclusively containing electron-
withdrawing groups, those exclusively containing electron-
donating groups, and those containing both types of groups 
(mixing groups) (Figure 4d and Figure S17). In particular, in 
the prediction space of gap, it is obvious that the electron-
withdrawing groups are situated on the upper left, while the 
electron-donating groups are located on the lower left. This 
suggests that the electron-withdrawing groups could increase 
the gap, whereas the electron-donating groups reduce the gap. 
Meanwhile, the gap of those molecules containing -NH2, -
OH, and -SH are indeed lower than the gap of those 
molecules containing -F, -CF3, and -SO3H (Figure 4f). 
Consequently, the visualization through the t-SNE 
underscores the robust learning capability of our MOAL in 
relation to various targets.
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As described above, the GNGPR model has played a 
significant role in our work. Apart from the quinone OEMs, 
we anticipate this model also can be competent for other type 
of OEMs or other systems. Therefore, another two databases 
were chosen to test the universality of GNGPR. One of the 
two databases was created by Carvalho et al. [15], which was 
comprised of more than 26000 various molecules (referred as 
OMEAD) and their physical and chemical properties, such as 
HOMO, LUMO, RP, and oxidation potential. Another 
database was the QM9 dataset which contained more than 
133 thousand molecules with the molecular geometric, 
energetic, electronic, and thermodynamic properties. For 
OMEAD, the model was trained based on the gap, HOMO, 
LUMO, and RP with different dataset sizes (100, 500, 1000, 
3000, and 5000) using 5-fold cross validation (Figure 5a). 
For QM9, a similar processing procedure to OMEAD was 
followed except no RP dataset in the QM9 (Figure 5b). 
According to the training outcomes, when the training size is 
set at 100, only for gap, the R2 of test set can reach the value 
of 0.839±0.158 (OMEAD) and 0.909±0.105 (QM9). The R2 
of other targets falls below 0.8, with the exception of LUMO 
(QM9). However, when the training size is increased to 500, 
all models exhibit satisfactory performance, most of which 
surpass 0.9, except for HOMO. From 100 to 1000 molecules, 
the improvement of GNGPR for all the targets in both 
databases is similar to our MOAL process, meaning that our 
model is universal and worth popularizing. Conceivably, for 
1000 to 5000 molecules, while there may be a slight increase 
in model performance, it is not significant. Specifically, 
Figure 5c-5e and Figure S18 present the predicted outcomes 
of QM9 and OMEAD, respectively, with a training size of 
4000 and a test size of 1000. The R2 scores for all targets, 
excluding HOMO, exceed 0.95. However, the R2 scores for 
the HOMO model stand at 0.949 for QM9 and 0.925 for 
OMEAD, thereby demonstrating the robust performance of 
GNGPR.

Figure 5  The training results of GNGPR for different targets based on 
OMEAD (a) and QM9 (b) databases by 5-fold cross-validation under 

different training size. The predicted results of gap (c), HOMO (d), LUMO 
(e) for OMEAD using GNGPR. The training set and test set are split into 
4:1.

While the black-box model of GNGPR is adept at learning 
essential chemical information for molecules and possesses 
excellent predictive ability, it falls short in defining or 
quantifying the influencing factors of targets. Herein, the 
sure-independence-screening-and-sparsifying-operator 
(SISSO) algorithm [46] was utilized to quantify both physical 
and chemical descriptors to create formulas to fit the targets. 
Accordingly, a total of 93 descriptors were meticulously 
selected and presented in Table S6, which were composed of 
the covalent radius and Pauli electronegative of atoms, 
molecular volume, type of bonds, functional groups, 
BCUT2D, and SlogP. These descriptors could function as the 
input for the SISSO algorithm, resulting in the generation of 
three distinct SISSO-descriptors (x1, x2, x3) for gap (Figure 
6a) and TED (Figure 6b), respectively. Linear regression 
models were employed to adjust the three SISSO-descriptors 
to fitting the gap and TED. The parameters ‘a’, ‘b’, ‘c’, and 
‘d’ are detailed in Table S7 and S8.

Figure 6  The descriptors and analysis of SISSO. The three descriptors 
generated by SISSO for gap (a) and TED (b). The predicted results of SISSO 
formulas with one (c), two (d), and three (e) descriptors for gap of MOAL. 
The predicted results of SISSO formulas with one (f), two (g), and three (h) 
descriptors for TED of MOAL.

As for gap, three linear regression models were built, and 
they were ySISSO=ax1+d, ySISSO=ax1+bx2+d, and 
ySISSO=ax1+bx2+cx3+d. Then the predicted results of MOAL 
are displayed in Figure 6c-6e and Table S9. It is observed that 
as the number of SISSO-descriptors increases, there is a 
corresponding decrease in the value of the root mean square 

Page 6 of 50

http://chem.scichina.com/english

Science China Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11426-024-2163-1



For Review Only

2 Du et al.   Sci China Chem   January (2015) Vol.58 No.1

error (RMSE). The descriptor x1 is associated with the 
electron-donating groups and unsaturated bonds. Compared 
with x1, x2 and x3 augment the predictive accuracy of gap in 
low and high ranges. This enhancement can be attributed to 
the supplement of electron-withdrawing groups like Sub188, 
(Sub274 - Sub307) and the global properties like qed, SVSA1. 
In addition, the three SISSO-descriptors of TED also 
demonstrate superior predictive performance (Figure 6f-h). 
Specifically, x1 is analogous to Equation S5, wherein the 
formula Chi0n/(ABond*RAA) acts as the RP. This illustrates 
that the SISSO algorithm can discover formulas with 
physical and chemical relevance. Furthermore, x2 and x3 
enhance the correction of TED in terms of the functional 
groups, atomic charge, and molecular polarity, respectively. 
Ultimately, the SISSO algorithm is utilized to fit the 
predicted values of TED and gap of all molecules in 
OQEMDB by MOAL (Figure S19). Inconceivably, the 
smaller RMSE of TED (72.061 Wh/kg) and gap (0.209 eV) 
emerge, illustrating the excellent robustness of SISSO. 
Besides, the SISSO still remains good prediction 
performance with small size of molecules, such as 50, 100 
and 500 molecules (Figure S20), while GNGPR model 
reaching stable predicting level needs more than or equal to 
300 molecules (Figure 3b and 3c). In brief, the explicit 
mathematical formulas have been sought to further quantify 
the structure-property relationship of gap and TED and 
facilitate the analysis of gap and TED.

In summary, we have proposed a MOAL framework to 
rapidly and accurately search multi-properties OEMs for 
LIBs. The MOAL framework constructed based on the 
neural network and GPR model could integrate the NSGA-II 
to harmonize the exploration-exploitation tradeoff in multi-
objective optimizations. The application of TFDD selected 
by our MOAL into LIBs exhibits a high energy density of 
774 Wh/kg and a long cycle life of 1000 cycles. 
Consequently, this framework demonstrates the outstanding 
capability of MOAL to assist experimental synthesis of high-
performance OEMs and accelerate the discovery of new 
materials with requisite properties for batteries. Moreover, in 
the field of materials science, it frequently occurs that merely 
small datasets are accessible for a specific task related to the 
material discovery. However, MOAL can achieve high 
scores of 0.920 for gap and 0.962 for TED with only 300 
molecules, thus offering an approach to coping with small 
datasets in material science. Importantly, another advantage 
is that our framework is universal and transferable by the 
validation of two additional database. Last but not the least, 
we have also employed the SISSO algorithm as assistance to 
accurately establish predictive and physically interpretable 

formulas that link the functional groups and molecular charge 
descriptors with the TED and gap. This approach can 
contribute to guidance of designing high-performance OEMs.
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SI Note 1. Creating database

The database was generated by RDKit [1] from which the “AllChem” module was used to add 12 

functional groups to the 12 quinone molecules (Figure S1). There were four reaction templates written in 

SMARTS code according to the environment of carbon atom from the 12 quinone molecules (Figure S2).
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Figure S1. The chemical space composed of 12 quinone molecules and 12 functional groups. The green 

dots are substitutional positions of functional groups.
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Figure S2. The four reaction templates of carbon atom whose H atom are replaced with 12 functional 

groups. The four strings are the SMARTS code to describe the four types of carbon atoms. The uppercase 

letters represent the non-aromatic atoms, and the lowercase letters represent the aromatic atoms. The 

number after colon is the ordinal number rather than the stoichiometric number. The green carbon atom is 

the reacted carbon atom whose H atom is substituted. 
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SI Note 2. Visualization of database

To show the OQEMDB, firstly, Morgan fingerprints [2] were extracted from the SMILES of 27463 

quinone molecules by RDKit. And the radius and nBits, the parameters of Morgan fingerprints, were set 

to 2 and 2048, respectively. The t-Distribution Stochastic Neighbor Embedding (t-SNE) was implemented 

by scikit-learn [3].
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Figure S3. Visualization of the quinone database by t-SNE and the data points colored according to the 

relative molecular mass.
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SI Note 3 Descriptors

In this work, three descriptors that were utilized to represent the organic molecules were many-body 

tensor representation (MBTR), Smooth Overlap of Atomic Orbitals (SOAP), and Atom-centered 

Symmetry Functions (ACSF). The three descriptors were generated by a python package, Dscribe [4]. 

Table S1. The detailed parameters of MBTR, ACSF, and SOAP.

Descriptors Parameters Shape of matrix

MBTR

species = ["H","C","N","O","S", "Cl","F"],
geometry ={ "function": "inverse_distance"},

grid = {"min":-0.5, "max":1.5, "n":100, "sigma":0.1},
weighting = {"function": "exp", "scale": 0.5, "threshold": 1e-3,},

periodic = False,
flatten = False,
sparse = False,

normalization = "l2"

(7, 7, 100)

SOAP

species = ["H","C","N","O","S","Cl","F"],
periodic = False,

rcut = 6,
nmax = 1,
lmax = 1

(60, 56)

ACSF

species = ["H","C","N","O","S","Cl","F"],
rcut = 6.0,

g2_params = [[1,1],[1,2],[1,3]],
g4_params = [[1,1,1],[1,2,1],[1,1,-1],[1,2,-1]]

(60, 140)
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SI Note 4 Active learning model

As mentioned in the main body, the active learning model was composed of GoogLeNet neural network 

and Gaussian Process Regression. 

GoogLeNet was a convolutional neural network (CNN) proposed by Szegedy et al. In our GoogLeNet 

model, it was achieved by Pytorch 1.9.0 package [5] and mainly consisted of BNConv2d block, Inception 

block (Figure S4), max pooling layer, and a Linear layer. The ReLU served as the active function, and we 

chose SmoothL1Loss as the loss function. The architectures of GoogLeNet for MBTR, ACSF, and SOAP 

were listed in Table S2.

As for BNConv2d and Linear layer, the former number in parentheses was the neurons of input, and 

the latter was the neurons of output. Generally, after the operation of pooling, the number of neurons 

maintained unchanged. Particularly, before Linear layer, the multi-dimension matrixes should be 

converted into 1-D matrix (nn.Flatten()). The length of 1-D matrix was the number of neurons of input 

for Linear layer. And as for Inception block composed of 4 channels (Figure 2b), the first number (i) in 

parentheses was the neurons of input, the middle number (m) was the neurons of output for first layer, and 

BNConv2d and the neurons of input for second layer BNConv2d. The last number (o) was the neurons of 

output for second layer. Different from BNConv2d, the neurons of output of Inception was equal to m+3o 

rather than o. (Table S2)

Gaussian Process Regression (GPR) was often used for Bayesian optimization surrogate model. The 

radial basis function (RBF) kernel combined with constant kernel was trained GPR model. The RBF kernel 

was given by:

                                                            𝑘𝑅𝐵𝐹(𝑥, 𝑥′) = 𝑒𝑥𝑝 ―
𝑑(𝑥, 𝑥′)2

2𝑙2                                               Equation S1
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where d was the Euclidean distance and l was the length scale of RBF kernel. The constant kernel was 

used to scale the magnitude of RBF kernel by multiplication. 
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Table S2. The neurons of input and output for every building block of GoogLeNet.

Building block MBTR ACSF SOAP
BNConv2d (7, 50) (1, 50) (1, 50)

Max pooling layer ----
Inception (50, 24, 32) (50, 24, 32) (50, 24, 32)
Inception (120, 32, 48) (120, 32, 48) (120, 32, 48)

Max pooling layer ----
Inception (176, 16, 24) (176, 16, 24) (176, 16, 24)
Inception (88, 10, 16) (88, 10, 16) (88, 10, 16)

Max pooling layer ----
Inception (58, 8, 10) (58, 8, 10) (58, 8, 10)

BNConv2d (38, 1) (38, 1) (38, 1)
nn.Flatten() ----
Linear layer (15, 1) (48, 1) (36, 1)
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Table S3. The distribution of neurons of Inception block.

Channel 1 Channel 2 Channel 3 Channel 4

(i, m) (i, m) (i, o)

(i, m)
(m, o) (m, o) Max pooling 

layer

Neurons of output of Inception m+3o
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Figure S4. The building blocks of GoogLeNet and GNGPR.
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Figure S5. The initial selected 100 molecules in the database.
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SI Note 5. The calculation of theoretical capacity, reduction potential, and theoretical 
energy density

Reduction potential: By a thermodynamic cycle (Figure S6), the four states of one organic molecule (R) 

were calculated by density of functional Theory (DFT). They were R in gas phase (R(gas)), R in solvation 

phase (R(sol)), R with one negative charge in gas phase (R-(gas)), and R with one negative charge in 

solvation phase (R-(sol)). Then, the reduction potential Ered was obtained through Equation S2 and 

Equation S3[6, 7]. 

All DFT calculations were performed by Gaussian 16 software[8], and the organic molecules were 

optimized at the level of b3lyp/6-31+(d, p). SMD solvation model were also considered during 

calculations. A constant 1.4 V is derived from the absolute potential of hydrogen electrode (-4.44 V) and 

the potential of Li/Li+, -3.04 V vs. SHE.

Figure S6. The thermodynamic cycle of calculating the reduction potential.

∆𝐺𝑟𝑒𝑑(𝑅, 𝑠𝑜𝑙) =  ∆𝐺𝑟𝑒𝑑(𝑅, 𝑔𝑎𝑠) + ∆𝐺𝑠𝑜𝑙(𝑅―) ― ∆𝐺𝑠𝑜𝑙(𝑅)         Equation S2

𝐸𝑟𝑒𝑑  =   ―
∆𝐺𝑟𝑒𝑑(𝑅,𝑠𝑜𝑙)

𝑛𝐹 ― 1.4 V                                          Equation S3

Theoretical capacity (TC): Here, we only count the carbonyl as the active site in the skeleton of aromatic 

rings rather than function groups such as -COOH, -NO2, and SO3H. Therefore, the theoretical capacity 

(TC, mAh g-1) can be obtained by Equation S4[9].

TC =  
𝑛𝐹

3.6𝑀𝑤
                                                              Equation S4
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Where n is the number of active sites of the investigated organic molecule, F is the Faraday constant (C 

mol-1), and Mw is the molar mass (g mol-1) of the investigated organic molecule.

Theoretical energy density (TED): The energy density is an important metrics for batteries. Here we 

have adopted TED (Wh kg-1) as one of the metrics of OEMs, which can be calculated by:

TED = TC × RP = 
𝑛𝐹

3.6𝑀𝑤
× RP                                              Equation S5
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Figure S7. (a) The evaluations of GPR, GoogLeNet, and GNGPR with ACSF. (b) The evaluations of 

GPR, GoogLeNet, and GNGPR with SOAP.
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SI Note 6. Bayesian optimization (BO)

In this work, BO was employed to pick out the potential good candidates from the predicting results 

of GNGPR (especially GPR part). The expected improvement (EI) as the acquisition function of BO was 

independently calculated for TED and Gap. The EI was given by:

EI = 𝜇(𝑥) ― 𝑓(𝑥+)Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍)     𝜎(𝑥) > 0
0                                                              𝜎(𝑥) > 0              Equation S6

                                                                𝑍 =
𝜇(𝑥) ― 𝑓(𝑥+) ― 𝜉

𝜎(𝑥)                                                              Equation S7

where 𝜇(𝑥) and 𝜎(𝑥) were the mean and standard deviation values of GPR-predicted results. 𝑓(𝑥+) 

was the best value of candidate, which was the max value for TED or minimum value for Gap in current 

training set. Φ(𝑍) and 𝜙(𝑍) represented the cumulative distribution function and the probability 

density function, respectively. 𝜉 was a constant value and here it was set to 0.01.
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Figure S8. The SmoothL1 Loss as the loss function of the number of epochs for TED during MOAL.
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Figure S9. The SmoothL1 Loss as the loss function of the number of epochs for Gap during MOAL.

After 50 epochs of training GoogLeNet models (Figure S8, S9), the values of loss function experience 

barely decrease. Therefore, it is appropriate that the parameters of GoogLeNet are saved after 100 epochs.
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Figure S10. The performance of GoogLeNet for TED during MOAL.
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Figure S11. The performance of GoogLeNet for gap during MOAL.
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Figure S12. The performance of GNGPR for predicting the TED during MOAL except the Initial and 

Gen10.
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Figure S13. The performance of GNGPR for predicting the gap during MOAL except the Initial and 

Gen10.
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Table S4. The top 100 molecules chosen according to the Pareto Front (NSGA-II). The ID number 2495 

is TFDD.

ID SMILES
1 O=c1c(=O)c2cc(F)cc3c2-c2c1cc(F)cc2c(=O)c3=O
59 N#Cc1cc(S)c2c3c1c(=O)c(=O)c1c(S)cc(C#N)c(c1-3)c(=O)c2=O
65 N#Cc1c(N)cc2c3c1c(=O)c(=O)c1cc(N)c(C#N)c(c1-3)c(=O)c2=O
91 N#Cc1cc(S)c2c3c1c(=O)c(=O)c1c(C#N)cc(S)c(c1-3)c(=O)c2=O
152 N#Cc1cc(C#N)c2c3c1c(=O)c(=O)c1c(C#N)cc(C#N)c(c1-3)c(=O)c2=O
158 N#Cc1cc2c3c(c1N)c(=O)c(=O)c1cc(C#N)c(N)c(c1-3)c(=O)c2=O
165 N#Cc1c(S)cc2c3c1c(=O)c(=O)c1cc(S)c(C#N)c(c1-3)c(=O)c2=O
191 N#Cc1cc2c3c(c1C#N)c(=O)c(=O)c1c(C#N)c(C#N)cc(c1-3)c(=O)c2=O
253 O=c1c(=O)c2c(Cl)cc(Cl)c3c2-c2c1c(S)cc(S)c2c(=O)c3=O
308 N#Cc1cc(C#N)c2c3c1c(=O)c(=O)c1c(S)cc(S)c(c1-3)c(=O)c2=O
335 O=c1c(=O)c2c(S)cc(Cl)c3c2-c2c1c(S)cc(Cl)c2c(=O)c3=O
342 O=c1c(=O)c2c(O)c(S)cc3c2-c2c1cc(S)c(O)c2c(=O)c3=O
353 Nc1nc2c3c(n1)c(=O)c(=O)c1nc(N)nc(c1-3)c(=O)c2=O
630 Cc1c(C)c(N)c2c(=O)c3cc4c(=O)c5ccccc5c(=O)c4cc3c(=O)c2c1N
1135 Nc1cc2c(=O)c3nc4c(=O)c5c(F)ccc(F)c5c(=O)c4nc3c(=O)c2cc1N
2445 O=C(C=C1)C=CC1=O
2449 O=C1C=C([N+](=O)[O-])C(=O)C=C1N(=O)=O
2453 N#CC1=C(C#N)C(=O)C=CC1=O
2454 O=C1C=CC(=O)C([N+](=O)[O-])=C1N(=O)=O
2455 N#CC1=CC(=O)C=C(C#N)C1=O
2456 O=C1C=CC(=O)C(F)=C1F
2458 O=C1C=C(O)C(=O)C(O)=C1
2461 O=C1C=C(F)C(=O)C(F)=C1
2470 O=C1C(O)=C(O)C(=O)C(O)=C1O
2471 O=C1C(S)=C(S)C(=O)C([N+](=O)[O-])=C1[N+](=O)[O-]
2480 N#CC1=C(C#N)C(=O)C(O)=C(O)C1=O
2495 O=C1C(F)=C(F)C(=O)C(F)=C1F
2523 N#CC1=C(C#N)C(=O)C([N+](=O)[O-])=C(N(=O)=O)C1=O
2524 N#CC1=C(F)C(=O)C(F)=C(C#N)C1=O
2536 N#CC1=C(C#N)C(=O)C(C#N)=C(C#N)C1=O
2539 N#CC1=C([N+](=O)[O-])C(=O)C(C#N)=C([N+](=O)[O-])C1=O
2554 N#CC1=C(C#N)C(=O)C([N+](=O)[O-])=C([N+](=O)[O-])C1=O
2563 O=C1C(O)=C(O)C(=O)C(F)=C1F
2566 COC1=C(OC)C(=O)C([N+](=O)[O-])=C([N+](=O)[O-])C1=O
2568 N#CC1=C(C#N)C(=O)C(S)=C(S)C1=O
2659 Nc1c2c(c(N)c([N+](=O)[O-])c1[N+](=O)[O-])C(=O)C=CC2=O
2719 NC1=C(N)C(=O)c2cc([N+](=O)[O-])c(N(=O)=O)cc2C1=O
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2731 Nc1cc2c(cc1N)C(=O)C([N+](=O)[O-])=C([N+](=O)[O-])C2=O
2764 N#Cc1c(F)c(S)c2c3c1c(=O)c(=O)c1c(S)c(F)c(C#N)c(c1-3)c(=O)c2=O
2781 N#Cc1c(N)c2c3c(c1C#N)c(=O)c(=O)c1c(C#N)c(C#N)c(N)c(c1-3)c(=O)c2=O
2811 Nc1c(S)c2c3c(c1S)c(=O)c(=O)c1c(S)c(N)c(S)c(c1-3)c(=O)c2=O
2858 N#Cc1c(F)c(C#N)c2c3c1c(=O)c(=O)c1c(C#N)c(F)c(C#N)c(c1-3)c(=O)c2=O
2888 Nc1c(F)c(S)c2c3c1c(=O)c(=O)c1c(N)c(F)c(S)c(c1-3)c(=O)c2=O
2901 O=c1c(=O)c2c(S)c([N+](=O)[O-])c(S)c3c2-c2c1c(O)c(F)c(O)c2c(=O)c3=O
2934 N#Cc1c(O)c(C(=O)O)c2c3c1c(=O)c(=O)c1c(C#N)c(O)c(C(=O)O)c(c1-

3)c(=O)c2=O
2937 N#Cc1c(S)c2c3c(c1S)c(=O)c(=O)c1c(C#N)c(C#N)c(C#N)c(c1-3)c(=O)c2=O
2940 Nc1c([N+](=O)[O-])c2c3c(c1[N+](=O)[O-])c(=O)c(=O)c1c([N+](=O)[O-])c(N)c([N

+](=O)[O-])c(c1-3)c(=O)c2=O
2946 Nc1c(F)c(S)c2c3c1c(=O)c(=O)c1c(S)c(F)c(N)c(c1-3)c(=O)c2=O
2981 O=c1c(=O)c2c(S)c(S)c(Cl)c3c2-c2c1c(S)c(S)c(Cl)c2c(=O)c3=O
3018 Cc1c(N)c(N)c2c3c1c(=O)c(=O)c1c(C)c(N)c(N)c(c1-3)c(=O)c2=O
3023 N#Cc1c(N)c([N+](=O)[O-])c2c3c1c(=O)c(=O)c1c([N+](=O)[O-])c(N)c(C#N)c(c1-

3)c(=O)c2=O
3050 N#Cc1c(S)c2c3c(c1Cl)c(=O)c(=O)c1c(Cl)c(C#N)c(S)c(c1-3)c(=O)c2=O
3055 Nc1c(Cl)c(S)c2c3c1c(=O)c(=O)c1c(S)c(Cl)c(N)c(c1-3)c(=O)c2=O
3059 O=c1c(=O)c2c(Cl)c(S)c(S)c3c2-c2c1c(S)c(S)c(Cl)c2c(=O)c3=O
3061 Nc1c(C(=O)O)c2c3c(c1[N+](=O)[O-])c(=O)c(=O)c1c(C(=O)O)c(N)c([N+](=O)[O-])

c(c1-3)c(=O)c2=O
3068 Nc1c(O)c(O)c2c3c1c(=O)c(=O)c1c(O)c(O)c(N)c(c1-3)c(=O)c2=O
3106 O=c1c(=O)c2c(S)c(O)c(O)c3c2-c2c1c(O)c(O)c(S)c2c(=O)c3=O
3129 Nc1c(S)c2c3c(c1[N+](=O)[O-])c(=O)c(=O)c1c(S)c(N)c([N+](=O)[O-])c(c1-

3)c(=O)c2=O
3200 N#Cc1c(F)c2c3c(c1F)c(=O)c(=O)c1c(S)c(C#N)c(S)c(c1-3)c(=O)c2=O
3230 N#Cc1c(O)c(C#N)c2c3c1c(=O)c(=O)c1c(C#N)c(O)c(C#N)c(c1-3)c(=O)c2=O
3233 O=c1c(=O)c2c(F)c(F)c(S)c3c2-c2c1c(F)c(F)c(S)c2c(=O)c3=O
3240 Cc1c(C#N)c(S)c2c3c1c(=O)c(=O)c1c(C)c(C#N)c(S)c(c1-3)c(=O)c2=O
3245 N#Cc1c(N)c(F)c2c3c1c(=O)c(=O)c1c(C#N)c(N)c(F)c(c1-3)c(=O)c2=O
3273 Nc1c(S)c2c3c(c1Cl)c(=O)c(=O)c1c(Cl)c(N)c(S)c(c1-3)c(=O)c2=O
3298 Nc1c(F)c2c3c(c1S)c(=O)c(=O)c1c(F)c(N)c(S)c(c1-3)c(=O)c2=O
3367 Nc1c(N(=O)=O)c2c3c(c1[N+](=O)[O-])c(=O)c(=O)c1c([N+](=O)[O-])c(N)c([N+](=

O)[O-])c(c1-3)c(=O)c2=O
3369 COc1c(C#N)c(S)c2c3c1c(=O)c(=O)c1c(OC)c(C#N)c(S)c(c1-3)c(=O)c2=O
3372 O=c1c(=O)c2c(S)c(F)c(S)c3c2-c2c1c(S)c(F)c(S)c2c(=O)c3=O
3394 N#Cc1c(F)c2c3c(c1S)c(=O)c(=O)c1c(F)c(C#N)c(S)c(c1-3)c(=O)c2=O
3404 N#Cc1c(S)c([N+](=O)[O-])c2c3c1c(=O)c(=O)c1c(C#N)c(S)c([N+](=O)[O-])c(c1-

3)c(=O)c2=O
3409 N#Cc1c(N)c2c3c(c1C#N)c(=O)c(=O)c1c(N)c(C#N)c(C#N)c(c1-3)c(=O)c2=O
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3500 Cc1c(N)c(N)c2c3c1c(=O)c(=O)c1c(N)c(N)c(C)c(c1-3)c(=O)c2=O
3550 N#Cc1c(S)c(S)c2c3c1c(=O)c(=O)c1c(S)c(S)c(C#N)c(c1-3)c(=O)c2=O
3565 N#Cc1c(F)c(C#N)c2c3c1c(=O)c(=O)c1c(C#N)c(Cl)c(C#N)c(c1-3)c(=O)c2=O
3572 N#Cc1c(C#N)c2c3c(c1C#N)c(=O)c(=O)c1c(C#N)c(C#N)c(C#N)c(c1-3)c(=O)c2=O
3601 N#Cc1c(N)c([N+](=O)[O-])c2c3c1c(=O)c(=O)c1c(C#N)c(N)c([N+](=O)[O-])c(c1-

3)c(=O)c2=O
3628 N#Cc1c(N)c(C#N)c2c3c1c(=O)c(=O)c1c(C#N)c(N)c(C#N)c(c1-3)c(=O)c2=O
3656 N#Cc1c(S)c2c3c(c1C#N)c(=O)c(=O)c1c(S)c(C#N)c(C#N)c(c1-3)c(=O)c2=O
3671 O=c1c(=O)c2c(S)c(Cl)c(S)c3c2-c2c1c(S)c(F)c(S)c2c(=O)c3=O
3673 N#Cc1c(N)c2c3c(c1N)c(=O)c(=O)c1c(F)c(C#N)c(F)c(c1-3)c(=O)c2=O
3676 Nc1c(O)c2c3c(c1[N+](=O)[O-])c(=O)c(=O)c1c(O)c(N)c([N+](=O)[O-])c(c1-

3)c(=O)c2=O
5845 N#Cc1c(C#N)c(F)c2c(=O)c3cc4c(=O)c5c(N)c(C(=O)O)c(C(=O)O)c(N)c5c(=O)c4cc

3c(=O)c2c1F
6009 N#Cc1c(F)c(F)c(C#N)c2c(=O)c3cc4c(=O)c5c(N)c(C(=O)O)c(C(=O)O)c(N)c5c(=O)

c4cc3c(=O)c12
10072 Nc1c(O)c(O)c(N)c2c(=O)c3nc4c(=O)c5cc(F)c(F)cc5c(=O)c4nc3c(=O)c12
10343 Nc1c(N)c(O)c2c(=O)c3nc4c(=O)c5c(N)ccc(N)c5c(=O)c4nc3c(=O)c2c1O
10743 N#Cc1c(C#N)c(N)c2c(=O)c3nc4c(=O)c5cc(C(=O)O)c(C(=O)O)cc5c(=O)c4nc3c(=O

)c2c1N
10934 Nc1c(N)c(N)c2c(=O)c3nc4c(=O)c5cc(S)c(S)cc5c(=O)c4nc3c(=O)c2c1N
11412 Nc1c(O)c(O)c(N)c2c(=O)c3nc4c(=O)c5c(F)c(F)c(F)c(F)c5c(=O)c4nc3c(=O)c12
11719 Nc1c(N)c(N)c2c(=O)c3nc4c(=O)c5c(O)c(C(F)(F)F)c(C(F)(F)F)c(O)c5c(=O)c4nc3c(

=O)c2c1N
12268 Nc1c([N+](=O)[O-])c(O)c(O)c2c(=O)c3nc4c(=O)c5c(O)c(O)c([N+](=O)[O-])c(N)c5

c(=O)c4nc3c(=O)c12
12859 N#Cc1c([N+](=O)[O-])c(N)c2c(=O)c3nc4c(=O)c5c(O)c(C#N)c([N+](=O)[O-])c(N)c

5c(=O)c4nc3c(=O)c2c1O
12910 Nc1c(N(=O)=O)c([N+](=O)[O-])c(N)c2c(=O)c3nc4c(=O)c5c(O)c(F)c(F)c(O)c5c(=O

)c4nc3c(=O)c12
13814 Nc1c([N+](=O)[O-])c(S)c2c(=O)c3nc4c(=O)c5c(S)c(N)c([N+](=O)[O-])c(S)c5c(=O)

c4nc3c(=O)c2c1S
13834 N#Cc1c(N(=O)=O)c(N)c2c(=O)c3nc4c(=O)c5c(N)c(C#N)c([N+](=O)[O-])c(N)c5c(

=O)c4nc3c(=O)c2c1N
17413 Nc1c2c(c(N)c([N+](=O)[O-])c1[N+](=O)[O-])C(=O)c1c(C(=O)O)c(C(=O)O)c(C(=O

)O)c(C(=O)O)c1C2=O
18577 Nc1c(O)c(O)c(N)c2c1C(=O)c1c(c([N+](=O)[O-])c([N+](=O)[O-])c([N+](=O)[O-])c

1[N+](=O)[O-])C2=O
19463 Nc1c2c(c(N)c([N+](=O)[O-])c1[N+](=O)[O-])C(=O)c1c(O)c(O)c(O)c(O)c1C2=O
27353 Nc1c2c(c(N)c([N+](=O)[O-])c1[N+](=O)[O-])C(=O)C(O)=C(O)C2=O
27397 Nc1c2c(c(N)c([N+](=O)[O-])c1[N+](=O)[O-])C(=O)C(Cl)=C(Cl)C2=O
27406 Nc1c2c(c(N)c([N+](=O)[O-])c1[N+](=O)[O-])C(=O)C(F)=C(F)C2=O
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SI Note 7. Experiment

Synthesis of 2,3,5,6-tetrafluorocyclohexa-2,5-diene-1,4-dione (TFDD)

2,3,5,6-tetrafluorohydroquinone (10 mmol) was added to an aqueous solution of ceric ammonium 

nitrate (21.1 mmol) in water and stirred for 4 h at room temperature. Then, the mixture was extracted with 

diethyl ether. After purification with a silica gel column, the solution was removed to obtain the yellow 

solid TFDD.

Electrochemical measurement

The cathodes were prepared with TFDD, KB conductive additive, and polytetrafluoroethylene (PTFE) 

with a weight ratio of 3:6:1 by water. The mixed slurry was fully ground by ball milling for 120 min, and 

then rolled into a film and pressed on a aluminum mesh current collector (10 mm) to obtain TFDD -based 

cathodes. The mass loading of TFDD was controlled at around 1.5 mg cm-2. The electrochemical 

performance of TFDD //Li metal batteries were tested in 2025-type coin cells and the electrolyte was 1 M 

LiPF6 in EC:DMC=1:1 Wt%. Galvanostatic charge–discharge cycling test was performed with a Land 

CT2001A battery testing system.
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Figure S14. The long-term cycling performance of TFDD at 1 A/g.
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Figure S15. The visualization of training space from GoogLeNet for TED (a) and Gap (b) by t-SNE. The 

data points of MOAL are colored by TED and Gap, respectively.
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Table S5. The theoretical capacities of 12 quinone molecules.

Rings RMW TC Rings RMW TC

O

O

1 108.10 495.86

O O

O O

4 262.22 408.50

O

O

2 158.16 338.91
N

N N

N

O O

O O

4 266.17 402.77

O

O

3 208.22 257.43

O

O

O

O

5 338.32 316.88

O

O
N

NN

N
3 212.77 251.93

O

O

N

N N

N
O

O

5 342.27 313.22

O O

3 208.22 257.43

O

O
N

N
O

O

5 340.29 315.04

N

N N

N

O O

3 212.77 251.93

O

O
N

NN

N N

N
O

O

5 344.25 311.42
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Figure S16. The data points are colored with their number of rings in the prediction space of Gap.
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Figure S17. The data points are colored with the functional group types (electron-donating, electron-

withdrawing, and mixing groups) in the prediction space of Gap. 
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Figure S18. The predicted results of Gap, HOMO, LUMO, and RP for OMEAD using GNGPR.
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Table S6. The selected descriptors for SISSO algorithm.

Descriptor Description Origination
SBond Count of single bonds ----
DBond Count of double bonds ----
TBond Count of triple bonds ----
UBond Count of unsaturated bonds ----
ABond Count of all bonds ----

EW Counts of electron-withdrawing groups ----
ED Count of electron-donating groups ----

AAtom Count of all atoms ----
MV Molecule volume RDKit
R Atomic covalent radius ----
En Pauli electronegativity ----

SBAB SBond/ABond ----
DBAB DBond/ABond ----
TBAB TBond/ABond ----
UBAB UBond/ABond ----

TC Theoretical capacity ----
qed Quantitative estimate of drug-likeness RDKit

EnRAA (∑i
N(Eni/Ri) ∗ Ai)/AAtom ----

EnAA (∑i
N(Eni ∗ Ai)/AAtom ----

RAA (∑i
N Ri ∗ Ai)/AAtom ----

EnRMV (∑i
N(Eni/Ri) ∗ Ai)/MV ----

EnMV (∑i
N(Eni ∗ Ai)/MV ----

RMV (∑i
N Ri ∗ Ai)/MV ----

SBMV SBond/MV ----
DBMV DBond/MV ----
TBMV TBond/MV ----

UBond/MV UBond/MV ----
EWMV EW/MV ----
EDMV ED/MV ----
Sub1 SubFPC1/MV
Sub9 SubFPC9/MV
Sub18 SubFPC18/MV
Sub28 SubFPC28/MV
Sub49 SubFPC49/MV
Sub96 SubFPC96/MV
Sub133 SubFPC133/MV
Sub135 SubFPC135/MV
Sub137 SubFPC137/MV

SubFPC Padel
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Sub139 SubFPC139/MV
Sub169 SubFPC169/MV
Sub171 SubFPC171/MV
Sub172 SubFPC172/MV
Sub175 SubFPC175/MV
Sub181 SubFPC181/MV
Sub184 SubFPC184/MV
Sub188 SubFPC188/MV
Sub224 SubFPC224/MV
Sub274 SubFPC274/MV
Sub275 SubFPC275/MV
Sub287 SubFPC287/MV
Sub288 SubFPC288/MV
Sub294 SubFPC294/MV
Sub295 SubFPC295/MV
Sub296 SubFPC296/MV
Sub297 SubFPC297/MV
Sub298 SubFPC298/MV
Sub299 SubFPC299/MV
Sub300 SubFPC300/MV
Sub301 SubFPC301/MV
Sub302 SubFPC302/MV
Sub307 SubFPC307/MV
MWHI BCUT2D_MWHI

MWLOW BCUT2D_MWLOW
CHGHI BCUT2D_CHGHI
CHGLO BCUT2D_CHGLO
LOGPHI BCUT2D_LOGPHI

LOGPLOW BCUT2D_LOGPLOW
MRHI BCUT2D_MRHI

MRLOW BCUT2D_MRLOW

BCUT2D RDKit

SVSA1 SlogP_VSA1
SVSA2 SlogP_VSA2
SVSA3 SlogP_VSA3
SVSA4 SlogP_VSA4
SVSA5 SlogP_VSA5
SVSA6 SlogP_VSA6
SVSA7 SlogP_VSA7
SVSA8 SlogP_VSA8
SVSA9 SlogP_VSA9
SVSA10 SlogP_VSA10

SlogP RDKit
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SVSA11 SlogP_VSA11
SVSA12 SlogP_VSA12

Chi0
Chi0n
Chi0v
Chi1
Chi1n
Chi1v
Chi2n
Chi2v
Chi3n
Chi3v
Chi4n
Chi4v

Rev. Comput. Chem. 2:367-422
(1991) RDKit
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Table S7. The fitting parameters of SISSO for Gap.

ySISSO=ax1+d ySISSO=ax1+bx2+d ySISSO=ax1+bx2+cx3+d

a -10.11656 -9.46115 -8.90098

b ---- 2.76411 2.84066

c ---- ---- -0.13274

d 3.62012 3.69012 3.52160
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Table S8. The fitting parameters of SISSO for TED.

ySISSO=ax1+d ySISSO=ax1+bx2+d ySISSO=ax1+bx2+cx3+d

a 11.60170 11.02244 10.74278

b ---- -8019.74503 -9203.03814

c ---- ---- -462.45118

d -71.35810 -123.79000 -126.68600
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Table S9. The R2 and mean absolute error (MAE) of SISSO for Gap and TED.

ySISSO=ax1+d ySISSO=ax1+bx2+d ySISSO=ax1+bx2+cx3+d
Database Metrics

Gap TED Gap TED Gap TED

R2 0.592 0.897 0.651 0.935 0.690 0.942
MOAL

MAE 0.266 88.991 0.247 69.477 0.228 67.461

R2 0.679 0.872 0.693 0.897 0.731 0.898
OQEMDB

MAE 0.182 62.559 0.179 55.035 0.166 54.894
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Figure S19. The predicted results of SISSO formulas with one (a), two (b), and three (c) descriptors for 

Gap in the prediction space of OQEMDB. The predicted results of SISSO formulas with one (d), two (e), 

and three (f) descriptors for TED in the prediction space of OQEMDB.
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Figure S20. The predicted results of SISSO algorithm with the datasets of 50, 100, and 500 molecules.
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